CHEMISTRY Paper 2 Aug/Sept 2023 21/2hours

KANUNGU JOINT MOCK EXAMINATIONS 2023 UGANDA ADVANCED CERTIFICATE OF EDUCATION

Chemistry Paper 2 2 hours 30 minutes

INSTRUCTIONS TO THE CANDIDATES

- Answer five questions including three questions in section A and any two questions in section
- Write the answers in the answer booklet provided.
- Begin each question on a fresh page.
- Mathematical tables and graph papers are provided.
- Begin each question on a fresh page.
- Non-programmable scientific electronic calculators may be used.
- Illustrate your answers with equations where applicable.
- Indicate the questions in the grid below.
- Where necessary use C = 12, O = 16, H = 1
- Molar gas volume is 22.4dm3 at s.t.p
- 1 atmosphere = 101325Nm⁻²

©2023Kanungu District Joint Mock Examinations

1. The table below shows the boiling points of chlor			Si Si		P	S	Cl
Element	Na	Mg	Al	14	15	16	17
Atomic	11	12	13				
number			AICI-	SiCl ₄	PCl ₃	S ₂ Cl ₂	Cl2
Formula of the	NaCl	MgCl ₂	AlCl ₃	5.0.7		A1 10 1	1.00

Element	Na	Mg	AI	14	15	16	17
Atomic	11	12	13	14			
number			1101	SiCl ₄	PCl ₃	S ₂ Cl ₂	Cl ₂
Formula of the	NaCl	MgCl ₂	AlCl ₃	BIO14			
chloride			100	57	76	136	-35
Boiling point	1465	1418	180	137	10	1.50	19,10,40

a) (i) Plot a graph of boiling points of the chlorides against atomic number of elements.

(3½ marks)

(ii) Explain the shape of the graph

(71/2 marks)

(b) Describe the reactions of chlorides with water

(09 marks)

1. (a) A compound X, vapour density 58, contains carbon 62.07%, hydrogen 10.34% and the rest being oxygen. X does not burn with a sooty flame.

Calculate the empirical formula of X (C=12, O=16, H=1) i.

(3 marks)

Determine the molecular formula ii.

(2 marks)

(b) Hydrolysis of X yielded compounds, Y, C₄H₁₀O and Z, C₂H₄O₂. Both Y and Z react with metallic sodium. Z reacted with sodium carbonate but Y did not.

Identify Z.

(1 mark)

Write names and the structural formulae of all the possible isomers of Y. (ii)

(4 marks)

Name a reagent that can be used to distinguish between the isomers in (b) (ii) and state what would be (iii) observed if the reagent you have named is reacted separately with each of the isomers.

(4 marks)

(c) When Y was warmed with acidified potassium dichromate solution, there was no observable change.

i. Identify Y. (1 mark)

ii. write the structural formulae of Y (1 mark)

- (d) (i) write equation and outline a mechanism for the reaction between Y and concentrated phosphoric acid (31/2 marks)
 - (ii) Write the IUPAC name of the product in d(i).

(0½ mark)

2. (a) State Raoult's Law.

(3 marks)

- (b) A mixture of ethanoic acid (B.P 118°C) and pyridine (B.p. 123°C) show negative deviation from Raoult's law.
- (i) Draw the vapour pressure/composition curve for the mixture of ethanoic acid and pyridine and indicate the line of Ideal (4 marks)
- (ii) Explain the shape of the curve in relation to Raoult's Law.

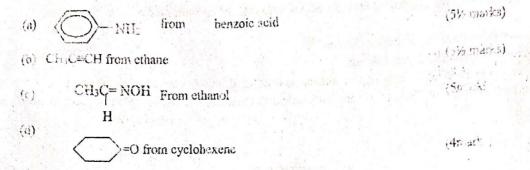
(6 marks)

(c) (i) Explain what is meant by 'steam distillation'

(3 marks)

- (ii) When a compound Y, was steam distilled at standard atmospheric temperature and pressure, the temperature of distillation was 96°C. The vapour pressure of water at this temperature was 730mm Hg and the distillate contained 74% of water. Calculate the relative molar mass of Y (4 marks)
 - 3. (a) Ethanoic acid is a weak acid
 - Explain what is meant by a "weak acid"

(1 marks)


©2023Kanungu District Joint Mock Examinations

				18 × 10 ⁻⁵ moldm ⁻³)	
(ii)	Calculate the pl	H of a 0.05M ethan	oic acid solution (Ka of eth	nanoic acid = $1.8 \times 10^{-5} \text{ moldm}^{-3}$) (4 marks)	
(11)	Ou.cum.			(4 marks)	
(b) (i) E	xplain what is mean	it by a "buffer solu	(5 marks)		
(ii) I	Discuss the action o	f a buffer solution		la litre solution.	To the
(c) A sol	lution was made by	dissolving 7.2g of	ethanoic and 12.0g of sodi	um ethanoate to make 1 litre solution. the solution. State any assumptions yo	ш
colution	was added 0.8 cm ³	of 1M hydrochlori	c acid. Calculate the pH of	the solution. State any assumptions yo (6 marks)	
make.	13/3			(6 marks)	
make.					
			SECTION R		
4. (a) d	ifferentiate between	n order and molecu	larity of reaction	(5marks)	
4. (a) u (b) T	The table below sho	ws some data for t	he reaction		
(0) 1	$A + 2B \rightarrow C$	$\Delta H = +QkJmol$			
	A LED				
Expt	. Initial concentr	ation of	Intial rate of reaction		
Z.rp.	Moldm ⁻³ of		Moldm-3s-1		
	A	В			
I	1.00 x 10 ⁻²	2.80 x 10 ⁻³	2.2		
II	5.00 x 10 ⁻³	2.80 x 10 ⁻³	1.1		
III	1.00 x 10 ⁻²	5.60 x 10 ⁻³	4.4		
	Determine the orde		respect to A and B	(3marks)	
	The the same	tion for the reaction	n	(1mark)	
	Write the rate equa		d' - I mine ita maita 17th	narks)	
(iii) (Calculate the rate c	onstant for the real	the concentration of A an	d B are 8.0 x 10 ⁻³ moldm ⁻³ amd 3.83 x	: 10-3
(iv)	Calculate the rate o	t the reaction whe	(2r	narks)	
r	noldm ⁻³ respective	ly.	of reaction in (b) if B wa	s present in larger excess. Explain you	ır
(v) S	State What would h	appen to the bertie	(3r	narks)	
2	answer.			(4marks)	
(vi) I	Draw a fully labelle	ed energy diagram	for the reaction in (b)		1. 34
			1 - Jima ha	drogen carbonate required 15.0cm3 of	a 0.5M
5. (a) 2	5cm3 of a solution	containing sodium	carbonate and sodium hyd	drogen carbonate required 15.0cm ³ of	rion
hydr	ochloric acid for co	omplete reaction u	sing phenolphtnalein indic	ator. Another 25cm ³ of the same solut	ion wit
requi	ired 34.5cm3 of the	acid using methyl	orange indicator. Calculat	e the molar concentration of the solut	lon
respe					1
(i)	Sedium carbon	ate			
(ii)	Sodium hydrog			(9marks)	
			*** 0.1	1: 4-11- Glata	100
(b) C	arbon, silicon, tin	and lead are eleme	ents of group IV of the per	lodic table. State	
т.	The common oxida	tion state shown b	y elements in group IV	(Imark)	
(a) I	low the stability of	the oxidation stat	tes of the elements vary da	wn the group?	
.,	Illustrate your ansy	ver with the chlori	ides of carbon and lead)	(3marks)	10.00
	live a reason for you	our answer in (b) (ii).	(1mark)	
) With r	eference to transit	ion metals explain	what is meant by the foil	owing	
	energies to transfer emplex ion	<u>eq.</u>		(2marks)	
				(2marks)	W. L
/	italyst	.t.t.		(2marks)	
11	ariable oxidation s	ILLE		(military)	100

reagents and conditions for the reaction. ©2023 Renargu District Joint Mock Examinations

6. Write equation to show how each of the following compounds can be synthesized. In each case, indicate the

Variable oxidation state

- 7. Explain each of the following observations
- (a) Calcium forms compounds containing Ca2+ ions but none containing Ca- ions even though the second ionisation energy of calcium is greater than its first ionisation energy
- (b) The basic strength of aminobenzene ammonia and dimethylamine are in the order

- (c) The ionic conductivities of Lithium ion is much less than that of Caesium although lithium and Caesium ions have ionic radii of 0.06 and 0.01 (mm) respectively
 - (d) A mixture of water (B.p 100°C) and benzene (B.p 80°C) boils at 70° C 1 atmosphere (4 marks)
 - (e) Methanoic acid reacts with ammoniac silver nitrate solution whereas ethanoic acid does not (3 marks)